
 3.1

 United Aircraft Corporation

 March 22, 1956

Note: This write-up cancels and supersedes write-up dated September 21, 1955.
 The effect of Addendum No. 1 is included in this write-up.

 SHARE Assembler

 Reproduced at Lincoln Laboratory

 (UA SAP 1 and 2)

 Roy Nutt

 704 instructions to be assembled by this program are written with re-
ferences expressed as arithmetic combinations of symbols and/or decimal integers.
A variable field format is used in which the parts of the instruction are given
in the order address, tag and decrement. In addition to instruction; data in
decimal, octal or Hollerith (BCD) form may be assembled, and library routines
written in the same symbolic form may be conveniently incorporated into the pro-
gram being assembled.

 A program to compute

is used as an example. (See last page).

 In order to describe the use of this assembly program, let us consider
first a simplified explanation of symbolic assembly operation.

 The procedure is divided into two parts; - the first examines the pro-
gram to be assembled in order to define each symbol used in writing the program.
The second part prepares the actual machine language program, punches it in binary
form on cards and produces a printed copy of the program in symbolic form together
with the corresponding octal machine language program.

 During the first part a counter is used to specify the absolute location
of each word in the program. Call this location counter L. L is set initially to
an integer supplied to the assembly program by the program being assembled, hence-
forth L is increased by one for each word to be used by the program.

 1.

 3.2

 Simultaneous1y with this counting procedure a table is constructed.
Each entry in this table defines a symbol used in the program as being equival-
ent to some integer. Entries to the table are made in two ways:

 1. A symbol appears as the "symbolic location" of a word in the program
being assembled and is assigned the value of L.

 2. A symbol is defined by a pseudo operation.

 It is important to note that the order of the absolute instructions
preduced by symbolic assembly is determined solely by the order in which the
symbolic instructions are read by the assembly program.

 During the second part of the assembly process L is computed in ex-
actly the same manner as it was during the first part. In addition all sym-
bols in the symbolic program are replaced by the integer equivalences given in
the table formed during the first part, thus producing an absolute program.

 Note that this operation requires that each symbol be uniquely defined.

 For use in the assembly program the following definitions are made:

 Symbol: Any combination of not more than 6 Hollerith characters,
 none of which is + - * / , $ and at least one of which is
 non-numeric.

 Integer: (with respect to instructions):
 Any decimal integer less than 1 000 000.

 The operation part of each instruction is specified by the standard
"SHARE" abbreviation of 3 alphabetic characters.

 A symbolic instruction should be identified by a symbol ("symbolic
location" only if it is necessary to refer to this instruction in the program.

 The address, tag and decrement parts of symbolic instructions are given
in that order. In some cases the decrement, tag or address parts are not nec-
essary, therefore the following combinations are permissible.

 OP

 OP Address

 OP Address, Tag

 OP Address, Tag, Decrement
Examples of the last three types occur in the illustrative problem at P3, P3+2
and P3+3 respectively.

 2.

 3.3

 Note the tag, if present, must be separated from the address by a comma
and similarly the decrement, if present, must be separated from the tag by a
comma. For the few instructions which require a tag bur no address, the address
zero shoul be used, for example:

 PDX 0,4

Similarly where a decrement is required with no tag a zero should be used as in

 TXL A,O,B

 The following card form is used by the assembly

 1-6 Symbol or blank

 7 Blank

 8-10 Abbreviated operation or blank:

 11 Blank

 12-72 Variable field

 73-80 Not used

Expressions defineing the address, tag and decrement are punched without blanks
from column 12 on. The first blank to the right of column 12 defines the end
of the instruction. All punching to the right of such a blank is considered to
be a remark and has no effect on the assembly process.

 If an instruction requires a symbolic location, the symbol used is pun-
ched in columns 1-6.

Ar1thmetic expressions

 Arithmetic expressions in terms of symbols and integers may be used with
some pseudo-operations and to define address, tag or decrement parts of 704 in-
structions.

 The following elementary operations may be used:

 addition, indicated by +

 subtraction, indicated by -

 multiplication, indicated by *

 division, indicated by /

No parenthethical expressions may be written.

 3.

 3.4

Integral arithmetic modulo 235 is used, hence

 1. Multiplication is not commutative with division:

 A*B/C≠A/C*B

 except when C is a factor of A.
 Note that A/C*B implies (A/C)*B net A/(C*B).

 2. Addition and subtraction are commutative:

 A+B-C=B-C+A

 3. Multiplication and division are distributive with respect to each
 other but not with respect to addition or subtraction:

 A+B*C/D≠A*C/D+B*C/D

 Note that A+B*C/D implies A+(B*C/D) and not (A+B)*C/D

 If the result of an expression is to be expressed in n binary places,
its value is computed modulo 2n. If the residue is negative, its 2’s complement
is the result.

 Hence if v is the value of an expression, r is the result used and

 For example the instruction at location P3+3 in the i11ustration has a
decrement part of -1. Here. m=1, v=-1, n=15 so that

 r=215-1

 Consider also the tag part of instruction on P4-1 where

 v=J+K=1+4=5

 m=5, n=3

 so that r=5

 4.

 3.5

PSEUDO OPERATIONS

Origin specification: ORG

 The location counter L is set to the value of the expression appearing
in the variable field. Each symbol appearing in the expression must have been
previously defined (i.e. appeared in the symbol field, columns 1-6, of some in-
struction or pseudo-instruction preceding this origin specification.)

 If no origin specification is given for a program the initial value of L
shall be zero.

 Origin specification instructions may be used at will.

Equals: EQU

 They symbol appearing in 1-6 is assigned the integer value given by the
expression appearing in the variable field. Each symbol used in this expression
must be previously defined.

 Note that the pseudo operation EQU is to be used only in those cases where
the symbol appearing in 1-6 specifies a preset program parameter such as the order
of a matrix, the pegree of a polynomial, the number of items in a group, or any
other quantity wheich is invariant with respect to the location of the program in
storage. If the symbol specifies the location of a piece of data or an instruct-
ion, the pseudo operation SYN should be used.

Synonym: SYN
 The symbol appearing in 1-6 is assigned the integer value given by the
expression appearing in the variable field. Each s,ymbol used in this expression
must be previously defined.

 Note that the pseudo operation SYN is to be used only in those cases where
the symbol appearing in 1-6 specifies the location of a pi~ce ot data, the location
of an instruction, or any other quantity whose value depends upon the location ot the
program in storage. If the symbol specifies a preset program parameter, the
pseudo operation EQU should be used.

Decimal data: DEC
 The decimal data beginning in column 12 is converted to binary and assigned
to consecutive locations L, 1+1, ...

 Successive words of data on a card are separated by commas, and the first
blank to the right of column 12 indicates that all punching to the right of this
blank is a remark.

 Signs are indicated by + or - (12 or 11 punch) preceding the number, the
exponent or the binary scale factor. Howerer it is not necessary to use the +
sign.

 The symbol appearing in 1-6 identities the first decimal data word on the
card. Successive words are identified relative to the first word. If no symbol
appears in 1-6, the data words are identified relative to that word most recently
identified by a symbol.

 5.

 3.6

 If none of the characters . E or B appear in a decimal data word, the
word is converted as a binary integer with the binary point at the right hand
end of the word.

 If either of the characters E or . or both appear in a decimal data word
and the character B does not appear, the word is converted to a 704 type floating
binary quantity. The decimal exponent used in this conversion is the number which
follows inunediately after the character E. If the character E does not appear,
the exponent is assumed to be zero. If the decimal point does not appear, it is
assumed to be at the right hand end. For example, 12.345, +12.345, 1.2345El,
l234.5E-2 and l2345E-3 are all equivalent representations of the same floating
point word.

 If the character B appears in a decimal data word, the word is converted
as a fixed point binary quantity. Tne binary scale factor used in this conversion
is the number which follows immediately after the character B; - it being the
number of binary places between the left hand end of the storage cell and the
binary point of the fixed point binary result. If the decimal point does not
appear in the decimal data word, it is addumed to be at the right hand end. The
decimal exponent used in this conversion is the number which follows immediately
after the character E. The order of B and E is not significant. For example,
12.345B4, +1.2345E1B4 and l2345B4E-3 are all equivalent representations of the
same fixed point quantity.

Octal data: OCT

 The octal data beginning in column 12 is taken in binary integer form,
the binary point considered to be on the right hand end of a 704 word, and
assigned to consecutive storage locations L, L+l,...

 Successive words are separated by commas and the first blank to the right
of column 12 indicates that all punching to the right is to be considered a re-
mark.

 The symbol appearing in 1~6 identifies the first octal data word on the card.
Successive words are identified relativ~ to the first word. If no symbol is used,
identification is relative to that word most recently identified bya symbol.

 In the case of 12 digit octal numbers, the following equivalences exist
with respect to the high order digit:

 -0 ≡ 4 -1 ≡ 5 -2 ≡ 6 -3 ≡ 7

Either fom may be used in coding for the assembly.

Hollerith data: BCD
 Nomally the 10 six character wc:rrds of Hollerith information from col.
13-72 are read and alSsigned to locations L, L+l,...,L+9. If, however, less than
10 BCD words are desired, a word count v (0<v<9) is punched in colwnn 12,
in which case v words are read and assigned to locations L, L+l,...,L+v-l.

 6.

 3.7

 The symbol appearing in 1-6 identifies the first Hollerith word on the
card. Successive words are identified relative to the first word. If no sym-
bol is used, identification is relative to that word most recently identified by
a symbol.

Block started by symbol: BSS

 The block of storage extending from L to L+N-1, where N is the value of the
expression beginning in column 12, is reserved by this pseudo operation. Each sym-
bol in the expression for N must have been previously defined.

 If a symbol is punched in 1-6, it is assigned the value L, corresponding to
the first word of the block reserved.

 Finally, L is replaced by L+N.

Block ended by symbol: BES

 This pseudo operation is exactly the same as BSS, except that the value
assigned. to any symbol appearing in 1-6 is L+N, corresponding to the location of
the first word following the block reserved.

Repeat: REP

Two expressions, the first beginning in column 12 and separated from the second
by a comma, define two integers M and N. The block of instructions and/or data
preceding the REP operation in locations L, L+l,...,L+M-l is repeated N times,
the repeated infomation being assigned to locations L+M, L+M+l,...,L+M*N-l.
Only one word of infomation may appear on each card which is part of a repeated
block.

Library search: LIB

 The library routine identified by the symbol in 1-6 is obtained trom a
library tape and inserted in the program being assembled. If the library routine
requries k words of storage it will occupy 1ocations L, L+l,...,L+K-l. The ident-
ification symbol is not entered in the table of symbols, but any symbols appearing
in the library routine are entered and properly defined.

 The first set of information on the library tape is an ordered list of the
subroutines which are on the tape. The assembly program always keeps track of the
position of the library tape and makes use of the information in the ordered list
of subroutines in order to search the library in the most efficient manner. (The
library tape is not rewound between searches.)

 Tape searching time may be minimized both by recording the most frequently
used subroutines at the beginning of the tape and by specifying that the subroutines
to be incorporated into any particular program are called for in the order in which
they appear on the tape.

Heading: HED

 It is often convenient to combine several programs into one program. Two
difficulties immediately arise. First, the symbolic references to data common
to the seyeral programs may differ in the individual programs. This can be easily
corrected by the use of synonyms which equate the proper symbols.

 7.

 3.8

 Second, it may be that two or more of the individual programs use the
same symbols for references which should be unique. In order to restore un-
iqueness, it is necessary to change the symbols in each program in some way.
The heading pseudo operation accomplishes this result in the following manner.

 The heading card supplies to the assembly program a single character
(punched in column 1 of the HED card). Each symbol in the program following the
HED pseudo operation is prefixed by this character except when a special indication
to cancel the prefixing operation is given. A new heading pseudo operation will
replace the prefix character. Thus several programs having non-unique symbols may
be combined by giving the heading pseudo operation with a unique character before
each program. If a numerical heading is used, then some non-numeric character
must be punched in 2-6 of the heading card.

 It is, however, sometimes necessary to make cross-references between the
individual programs. To accomplish this, such references must be written in the
following way. Let H be the heading character and K be the symbol in the block
headed by H to which reference is to be made. To refer to K from a part of the
program not headed by H write

 H$K

The special character $ indicates to the assembly program that K is to be pre-
fixed by H instead of by the prefix given on the last heading card.

 It is important to note that if use is to be made of the Heading feature,
all symbols used throughout the program will usually be restricted to five or
fewer characters. If any six-character symbols (such as the erasable storage
designation COMMON) are used, these symbols will not be headed.

Define: DEF
 If there exist in the program symbols not defined in accordance with the
normal rules, such symbols may be defined in a different manner by use of the
pseudo operation DEF. This pseudo operation causes the first such symbol en-
countered in an address, tag or decrement to be assigned the value given by the
expression betinning in column 12 of the DEF card, Successive undefined symbols
are then given successive values until either a new DEF is given (in which case
a new assignment is begun) or until the capacity of the symbol table is exceeded.

 Note that the pseudo operation DEF can not be used tode.f1ne an otherwise
undefined symbol if this symbol occurs in the address, tag or decrement of an
instruction which precedes the DEF card. The pseudo operation DEF defines only
those otherwise undefined symbols which are first encountered after the DEF card
itself has been encountered.

 Similarly, if two DEF cards are used, and if an otherwise indefined sym-
bol occurs both in instructions which appear between the two DEF cards, as well
as in instructions which follow the second DEF card, then the definition which
will be used throughout is the one established by the first DEF card. The sec-
ondDEF card has in such a case no effect on the already - established definition.

 8.

 3.9

Remarks: REM

 Any Hollerith punching in column 12-72 will be reproduced in the prin-
ted listing of the assembly, without otherwise affecting the assembly in any
way.

End of program: END

This pseudo operation must be the last read by the assembly program. The value
of the expression beiinning in column 12 is punched as the transfer address in a
704 binary correction/transfer card.

Operation code

 In addition to the standard 3 letter operation code adopted by SHARE, this
assembly program recognizes the following codes which may be used to assign arbit-
rary values to the prefix and sign of calling sequence words:

 Alphabetic Code Name Octal Code

 MZE Minus zero -0000
 MON Minus one -1000
 MTW Minus two -2000
 MTH Minus three -3000
 PZE Plus zero +OOOO
 PON Plus one +1000
 PTW Plus two +2000
 PTH Plus three +3000
 FOR Four -0000
 FVE Five -1000
 Six Six -2000
 SVN Seven -3000

 In coding symbolic instructions which have OFF, CHS, CLM, COM, DCT, ETM,
IOD, LTM, LBT, PBT, RCD, RPR, RTT, RND, SLF, SPT, SSM, SSP, WTV, WPR, or WPU as
their operation part, the address part should be blank or zero, since the assemb-
ly program automatically introcduces the correct address.

 In coding symbolic instructions which have BST, RDR, RTB, RTD, REW, SLN,
SLT, SPR, SPU, SWT, WDR, WEF, WTB, WTD, or WTS as their operation part, the ad-
dress part should be the unit number (in decimal). For instance, BST 2 implies
Back Space Tape No. 2, SPR 9 implies Sense Printer Exit No. 9, WDR 3 implies Write
Drum No. 3, and so on. The assembly program automatically computes the correct
octal address (222, 371, and 303 respectively, in the foregoing examples).

Location counter

 If an absolute decimal location (i.e.: one containing no non-numeric
characters) is punched in columns 1-6 of any card in the assembly, the location
counter L will be set to that value. The effect of absolute decimal punching
in these columns is therefore identically the same as if the card in question
were to be placed immediately behind an ORG card having the exact same absolute
decimal location punched in its variable field.

 9.

 3.10

Operational features

 As an aid to the programmer this assembly program gives some indications
of erroneously prepared programs.

 If a symbol used in the program is not defined; address, tag or decrement
parts containing this symbol are left blank in the printed assembly and zero is
used for the corresponding address, tag or decrement parts in the binary instruct-
ion deck. In the case of pseudo operations involving undefined symbols, any ex-
pressions containing such symbols are evaluated using zero as the value of the un-
defined symbol. A list of all undefined eymqols will be printed at the end of the
assembly. (Included in this list will also be any symbols which have been defined
by means of the pseudo operation DEF).

 If a non-existent operation code is used, the prefix part of the correspond-
ing instruction is left blank in the printed assembly and zero is used as the op-
eration code in the binary deck.

 A list of duplicated symbols is printed prior to the printing of the pro-
gram. This list gives the symbol duplicated and the integer values assigned to it.

 Other convenient features are:

 Printing of the entire program may be suppressed, or printing of the
 subroutines copied from the library may be suppressed.

 Single or double spacing is optional.

 Assembly may be made from either a BCD tape, or from cards.

 Binary punching is available in either non-relocatable or relocatable
 format.

Capacity of the symbol table

 Sufficient space has been set aside in core storage in order to permit the
assembler to construct a symbol table containing 1097 entries. In cases where the
program to be assembled makes use of the library tape, however, the maxinum number
of symbols which the assembler can handle is somewhat reduced. This follows from
the fact that the entire ordered list of subroutines which forms the firat set of
information on the library tape is copied into the upper end of the symbol table
area at the time that the first LIB card is encountered. Hence if the library tape
is used during an assembly, the effective symbol table size becomes 1097 minus the
number of library subroutines on the tape.

 In connection with the capacity of the symbol table, it should also be
noted that any unassigned symbols are also recorded in this symbol table area
preparatory to printing the list of unassigned symbols at the end of the assembly.
Hence if a case arises where the number of assigned symbols plus the number ot sub-
routines in the tape library (if used) plus the number of unassigned symbo1s should
total more than 1097, then the list of unassigned symbols printed at the end of the
assembly will include only enough symbols to make up the 1097 total. The rest of
the unassigned symbols can only be detected by noting blank addresses, tags or de-
crements in the printed output.

 10.

 3.11

Reassembly features

 Additions to a program which has been assembled are easily accomplished if
the table of symbols which was punched during the initial assembly process has
been saved. It is then necessary only to reload this table and assemble the new
parts of the program. The original program need not be reloaded.

 Furthermore any change to the original program which does not involve re-
location of any part of the program, or any reassignment of symbols, may be made
by assembly of only those parts of the program which are to be changed.

Enlarged core storage

 The assembler has been so written as to permit it to be used, without change,
in 704’s with enlarged core storage.

 For each additional two words of core storage beyond the minimum of 4096,
the assembler automatically provides for one &dditional syabol in the symbol table.

 11.

 3.12

 04000 ORG 2048

 04000 -0 53400 5 04011 LXD P1, J+K Initialize Index Registers

 04001 -0 63400 4 04020 P4 SXD P2,K Store K

 04002 0 5000O 1 04022 CLA A+l,J Obtain First Element

 04003 1 77777 1 04004 TXI P6,J,-l X

 04004 -2 00001 4 04017 P6 TNX P5,K,1 X

 04005 0 76500 0 00043 P3 LRS 3, Form Polynomial

 04006 0 26000 0 04046 FMP X In X

 04007 0 30000 1 04022 FAD A+l,J X

 04010 1 77777 1 04011 TXI Pl,J,-l Step Coefficient

 04011 2 00001 4 04005 P1 TIX P3,K,1 Test Reduced K

 04012 0 60100 0 04051 STO S Store Partial Sum

 04013 0 56000 0 04050 LDQ Z Form Polynomial

 040l4 0 26000 0 04047 FMP Y In Y

 04015 0 30000 0 04051 FAD S X

 04016 -3 77754 1 TXL OUT,J.-R/2+1 X

 04017 0 60100 0 04050 P5 STO Z X

 04020 1 00000 4 04001 P2 TXI P4,K X

 00005 N EQU 5

 00052 R EQU N*N+3*N+2 Note that the a/sij/S’s are

 04021 A BSS R/2 stored in the order a/s05/S,

 04046 0 00000 0 00000 X a14, a04, a23, a13, a03,

 04047 0 00000 0 00000 Y , a00 from location

 04050 0 00000 0 00000 Z A on.

 0405l 0 00000 0 00000 S

 00001 J EQU 1

 00004 K EQU 4

 04000 END P4-1

 00000 OUT

 12.

 3.13

 United Aircraft Corporation

 March 7, 1956

 SHARE Assembler Operator’s Notes

 (UA SAP 1 and 2)

 Roy Nutt

Control panel requirements:

 SHARE 72 column reader panel (1-72)
 SHARE 72 column punch panel (1-72)
 SHARE 72-120 printer panel

Tapes:

 If the library tape and both the off-line printer and the off-line reader
are used, three tapes are required, namely

 logical tape 1: input tape
 logical tape 2: output tape
 logical tape 3: library tape

 Logical tape 1 is normally needed for either off-line or on-line input.
However it is not required if the symbolic deck is read twice by the on-line
reader.

 Logical tape 2 is not needed if off-line output is not required.

 Logical tape 3 is not needed if the library is not used.

Sense switches:

1 Up and 2 up: Input to both passes is from logical tape 1 (prepared
 previously on the off-line reader or by an off-line reader
 simulator).

1 Down and 2 up: Input to the first pass is from symbolic cards read on-line.
 Input to the second pass is from logical tape 1 which (with
 this sense switch setting) is written during the t1rst pass.

1 Down and 2 Down: Input to both passes is from symbolic cards read on-line.
 With this sense switch setting, logical tape 1 is not used.

 13.

 3.14

3 Up: Suppress on-line printing.

3 Down: Output is printed on-line.

4 Up: Any on-line printing is single spaced.

4 Down: Any on-line printing is double spaced.

5 Up: Logical tape 2 is written during the second pass, in order
 to permit later off-line printing.

5 Down: Suppress preparation of logical tape 2.

6 Up: Suppress printing of library subroutines.

6 Down: Library subroutines taken from the library tape are printed.

Program control:

 If necessary, mount the library tape as logical tape 3.

 Set the sense switches as desired.

 If the symbolic deck has been written on tape, mount this tape as logical
tape 1 and load UA SAP 1 followed by UA SAP 2.

 If the symbolic deck is to be read on-line, place it between UA SAP I
and UA SAP 2.

 It the symbolic deck is to be read again during the second pass, place
it also between the transfer card of UA SAP 2 and the two blank cards which follow.

UA SAP I Stops:

(437)8 HTR (400)8: Should occur only during on-line reading of symbolic
 cards (1. e.: sense switch 1 down). Indicates a card
 punched with an illegal (non-Hollerith) character, or
 a machine error while reading symbolic cards. Ready
 the correct card in the reader and press start. The
 card for which the stop occurred will be the third card
 back in the stacker after running the cards out of the
 feed.

(1401)8 HTR (1372)8: End of file condition while reading symbolic cards
 on-line. Ready remainder of deck and press start.

 14.

 3.15

(1414)8 HTR (1372)8: End of file condition from tape. Machine error or
 no END card written on tape. Reassemble.

(1543)8 HTR (1375)8: Symbol Table has been filled. Assemble program in
 smaller sections.

(1641)8 HTR (1550)8: Library search failed twice. Press start to try again.

(2121)8 HTR (2116)8: Wrong board in printer. Replace with SHARE 72-120
 board and press start.

(2225)8 HTR (2330)8: Check sum for symbol table is wrong. Probably machine
 error. Reassemble or press start to continue.

UA SAP 2 Stops:

(437)8 HTR (400)8 Should occur only during on-line reading of symbolic
 cards (1. e.: sense switch 2 down). Indicates a card
 punched with an illegal (non-Hollerith) character, or
 a machine error. Ready the correct card in the reader
 and press start.

(1463)8 HTR (1454)8: End of file condition while reading symbolic cards
 on-line. Ready remainder of deck in reader and press
 start.

(1474)8 HTR (1454)8: End of file condition while reading tape. Either
 machine error or no END card on tape. Reassemble.

(2466)8 HTR (2375)8: Library search failed twice. Press start to try again.

UA SAP 2 Transfer cards:

 UA SAP 2 58 is the normal transfer card. It is used when standard SHARE
absolute binary cards are to be punched.

 If it is desired to punch relocatable binary cards, it is necessary to
replace the transfer card of UA SAP 2 by a correction/transfer card which modifies
UA SAP 2 appropriately. This card is designated

 UA SAP 2 58 (UA SAP 2 NQ)

 If it is desired to punch 24 words/card it is necessary to replace the
transfer card of UA SAP 2 by a correction/transfer card which modifies UA SAP 2
appropriately. This card is designated

 UA SAP 2 58 (UA SAP 2 EH)

Use of the symbol table:

 If it is desired to assemble a symbolic program which makes reference to
symbols defined by a previous assembly and the program to be assembled defines no
symbols defined by the previous assembly (or in the case of duplicate definitions
the duplicated symbols are defined as the same absolute number) then the symbol
table from the previous assembly may be used to provide the necessary references.
 To accomplish this the symbol table is loaded immediately before the transfer
card of UA SAP 1 and assembly is performed in the normal way.
 15.

 March 14, 1958

 Op code For UASAP1

 ACL ADD AND CARRY LOGICAL WORD

 ADD ADD

 ADM ADD MAGNITUDE

 ALS ACCUMULATOR LEFT SHIFT

 ANA AND TO ACCUMULATOR

 ANS AND TO STORAGE

 ARS ACCUMULATOR RIGHT SHIFT

 BST BACKSPACE TAPE

 CAC COPY AND ADD AND CARRY LOGICAL

 CAD COPY AND ADD AND CARRY LOGICAL WORD

 CAL CLEAR AND ADD LOGICAL WORD

 CAS COMPARE ACCUMULATOR WITH STORAGE

 CFF CHANGE FILM FRAME

 CHS CHANGE SIGN

 CLA CLEAR AND ADD

 CLM CLEAR MAGNITUDE

 CLS CLEAR AND SUBTRACT

 COM COMPLEMENT MAGNITUDE

 CPY COPY OR SKIP

 DCT DIVIDE CHECK TEST

 DVH DIVIDE OR HALT

 DVP DIVIDE OR PROCEED

 ETM ENTER TRAPPING MODE

 FAD FLOATING ADD

 FDH FLOATING DIVIDE OR HALT

 FDP FLOATING DIVIDE OR PROCEED

 FMP FLOATING MULTIPLY

 FOR FOUR

 FSB FLOATING SUBTRACT

 FVE FIVE

 HPR HALT AND PROCEED

 HTR HALT AND TRANSFER

 IOD INPUT - OUTPUT DELAY

 LBT LOW ORDER BIT TEST

 LDA LOCATE DRUM ADDRESS

 - 2 -

 LDQ LOAD MQ

 LGL LOGICAL LEFT

 LLS LONG LEFT SHIFT

 LRS LONG RIGHT SHIFT

 LTM LEAVE TRAPPING MODE

 LXA LOAD INDEX FROM ADDRESS

 LXD LOAD INDEX FROM DECREMENT

 MON MINUS ONE

 MPR MULTIPLY AND ROUND

 MPY MULTIPLY

 MSE MINUS SENSE

 MTH MINUS THREE

 MTW MINUS TWO

 MZE MINUS ZERO

 NOP NO OPERATION

 ORA OR TO ACCUMULATOR

 ORS OR TO STORAGE

 PAX PLACE ADDRESS IN INDEX

 PBT P BIT TEST

 PDX PLACE DECREMENT IN INDEX

 PON PLUS ONE

 PSE PLUS SENSE

 PTH PLUS THREE

 PTW PLUS TWO

 PXD PLACE INDEX IN DECREMENT

 PZE PLUS ZERO

 RCD READ CARD READER

 RDR READ DRUM

 RDS READ SELECT

 REW REWIND

 RND ROUND

 RPR READ PRINTER

 RQL ROTATE MQ LEFT

 RTB READ TAPE, BINARY

 - 3 -

 RTD READ TAPE, DECIMAL

 RTT REDUNDANCY TAPE TEST

 SBM SUBTRACT MAGNITUDE

 SIX SIX

 SLF SENSE LIGHTS OFF

 SLN SENSE LIGHT ON

 SLQ STORE LEFT HALF MQ

 SLT SENSE LIGHT TEST

 SLW STORE LOGICAL WORD

 SPR SENSE PRINTER

 SPT SENSE PRINTER TEST

 SPU SENSE PUNCH

 SSM SET SIGN MINUS

 SSP SET SIGN PLUS

 STA STORE ADDRESS

 STD STORE DECREMENT

 STO STORE

 STP STORE PREFIX

 STQ STORE MQ

 STZ STORE ZERO

 SUB SUBTRACT

 SVN SEVEN

 SXD STORE INDEX IN DECREMENT

 TIX TRANSFER ON INDEX

 TLQ TRANSFER ON LOW MQ

 TMI TRANSFER ON MINUS

 TNO TRANSFER ON NO OVERFLOW

 TNX TRANSFER ON NO INDEX

 TNZ TRANSFER ON NO ZERO

 TOV TRANSFER ON OVERFLOW

 TPL TRANSFER ON PLUS

 TQO TRANSFER ON MQ OVERFLOW

 TQP TRANSFER ON MQ PLUS

 TRA TRANSFER

 - 4 -

 TSX TRANSFER AND SET INDEX

 TTR TRAP TRANSFER

 TXH TRANSFER ON INDEX HIGH

 TXI TRANSFER WITH INDEX INCREMENTED

 TXL TRANSFER ON INDEX LOW OR EQUAL

 TZE TRANSFER ON ZERO

 UFA UNNORMALIZED FLOATING ADD

 UFM UNNORMALIZED FLOATING MULTIPLY

 UFS UNNORMALIZED FLOATING SUBTRACT

 WDR WRITE DRUM

 WEF WRITE END OF FILE

 WPR WRITE PRINTER

 WPU WRITE PUNCH

 WRS WRITE SELECT

 WTB WRITE TAPE, BINARY

 WTD WRITE TAPE, DECIMAL

 WTS WRITE TAPE SIMULTANEOUSLY

 WTV WRITE CRT

 WTV WRITE CRT

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

